Learning in Markov Random Fields with Contrastive Free Energies
نویسندگان
چکیده
Learning Markov random field (MRF) models is notoriously hard due to the presence of a global normalization factor. In this paper we present a new framework for learning MRF models based on the contrastive free energy (CF) objective function. In this scheme the parameters are updated in an attempt to match the average statistics of the data distribution and a distribution which is (partially or approximately) “relaxed” to the equilibrium distribution. We show that maximum likelihood, mean field, contrastive divergence and pseudo-likelihood objectives can be understood in this paradigm. Moreover, we propose and study a new learning algorithm: the “kstep Kikuchi/Bethe approximation”. This algorithm is then tested on a conditional random field model with “skip-chain” edges to model long range interactions in text data. It is demonstrated that with no loss in accuracy, the training time is brought down on average from 19 hours (BP based learning) to 83 minutes, an order of magnitude improvement.
منابع مشابه
Particle Filtered MCMC-MLE with Connections to Contrastive Divergence
Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn these models exactly, various approximate learning techniques have been developed, such as contrastive divergence (CD) and Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE). In this paper, we introduce...
متن کاملLearning Heterogeneous Hidden Markov Random Fields
Hidden Markov random fields (HMRFs) are conventionally assumed to be homogeneous in the sense that the potential functions are invariant across different sites. However in some biological applications, it is desirable to make HMRFs heterogeneous, especially when there exists some background knowledge about how the potential functions vary. We formally define heterogeneous HMRFs and propose an E...
متن کاملOn Contrastive Divergence Learning
Maximum-likelihood (ML) learning of Markov random fields is challenging because it requires estimates of averages that have an exponential number of terms. Markov chain Monte Carlo methods typically take a long time to converge on unbiased estimates, but Hinton (2002) showed that if the Markov chain is only run for a few steps, the learning can still work well and it approximately minimizes a d...
متن کاملStructure Learning of Undirected Graphical Models with Contrastive Divergence
Structure learning of Markov random fields (MRFs) is generally NP-hard (Karger & Srebro, 2001). Many structure learners and theoretical results are under the correlation decay assumption in the sense that for any two nodes i and k, the information about node i captured by node k is less than that captured by node j where j is the neighbor of i on the shortest path between i and k (Netrapalli et...
متن کاملSubset Selection for Gaussian Markov Random Fields
Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005